

## Emerging Infectious Disease Challenges

Anthony Wilson, The Pirbright Institute



#### STAR-IDAZ Foresight workshop on Emerging Infectious Disease Challenges



The Pirbright Institute receives strategic funding from BBSRC.



# What do we mean by "disease emergence"?

A disease which is rapidly increasing in incidence, distribution or both.

### High impact human pathogens:

- 66% zoonotic, 67% emerging
- High impact domestic animal pathogens:
- 67% zoonotic, 57% emerging

McIntyre et al. (in press) PLoS ONE



### Recent infectious disease emergence events



Source: own work

![](_page_3_Picture_0.jpeg)

### 1999: West Nile in US

![](_page_3_Figure_2.jpeg)

## 1999: West Nile in US (contd)

- 37,088 cases reported to CDC from 1998-2012
- 18,000 hospitalised
- 1,500 deaths
- Clinical presentations: fever, meningitis, encephalitis, acute flaccid paralysis
- Annual burden: \$56M
- Total burden, 1998-2012: \$778M.

J. E. Staples, M. Shankar, J. J. Sejvar, M. I. Meltzer, M. Fischer. Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease. American Journal of Tropical Medicine and Hygiene, 2014; DOI: <u>10.4269/ajtmh.13-0206</u> www.pirbright.ac.uk

![](_page_5_Picture_0.jpeg)

## 1998: Nipah virus, Malaysia

- 1.1M pigs culled (of national herd of 2.4M)
- Over 100 human deaths.
- \$100M+ cost
- Massive changes to industry

![](_page_5_Figure_6.jpeg)

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Crysmization conserning the legal status of any country, territory, city or area or of its authorities, or concerning the identifiation of its foroiliers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Data Source: Global Alert and Resconse Department World Health Organization Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization

![](_page_5_Picture_9.jpeg)

Source: WHO (http://www.who.int/csr/disease/nipah/en/)

![](_page_6_Picture_0.jpeg)

![](_page_6_Picture_1.jpeg)

### Bluetongue in Europe, 1998:2005

| Year of first isolation | Source of sample                                                                  | Serotype | Probable route of introduction |
|-------------------------|-----------------------------------------------------------------------------------|----------|--------------------------------|
| 1998                    | Greece, Bulgaria, Turkey,<br>Bosnia, Kosovo, Serbia                               | BTV-9    | С                              |
| 1999                    | Sardinia, Corsica, Sicily, mainland Italy, Balearics                              | BTV-2    | B                              |
| 1999                    | Greece                                                                            | BTV-4    | China States                   |
| 1999                    | Greece                                                                            | BTV-16   | C                              |
| 2001                    | Greece                                                                            | BTV-1    | C                              |
| 2001                    | Corsica, Sardinia, Sicily                                                         | BTV-2    | B                              |
| 2002                    | Mainland Italy                                                                    | BTV-16   | Vaccine-derived                |
| 2003                    | Corsica, Menorca                                                                  | BTV-4    | B                              |
| 2004                    | Spain & Portugal                                                                  | BTV-4    | A                              |
| 2004                    | Corsica, Sardinia, Sicily                                                         | BTV-16   | Vaccine-derived                |
| 2004                    | Cyprus                                                                            | BTV-16   | C A                            |
| 2006                    | Belgium, Netherlands, Germany,<br>France, Luxembourg, UK,<br>Denmark, Switzerland | BTV-8    | Unknown                        |
| 2006                    | Bulgaria                                                                          | BTV-8    | Unknown                        |
| 2006                    | Sardinia                                                                          | BTV-1    | В                              |
| 2007                    | Spain                                                                             | BTV-1    | A                              |
| 2008                    | Switzerland                                                                       | BTV-25   | Special                        |
| 2008                    | Netherlands                                                                       | BTV-6    | Unknown www.pirbright.ac.ul    |

## Progression of bluetongue in Europe, 2006-2008

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_9_Picture_0.jpeg)

## Costs of BTV infection

![](_page_9_Picture_2.jpeg)

## DIRECT:

- fallen stock
- weight loss
- reduced milk yield
- abortions

## **INDIRECT:**

- movement restrictions
- international trade restrictions
- control and treatment costs

![](_page_9_Picture_12.jpeg)

Costs associated with BTV: Netherlands as a case study

### 2006

Net cost approx. €30m 88% of costs borne by cattle industry

![](_page_10_Figure_3.jpeg)

Net cost approx. €170m

85% of costs borne by cattle industry

![](_page_10_Figure_6.jpeg)

![](_page_10_Figure_7.jpeg)

Production losses

![](_page_10_Figure_9.jpeg)

with thanks to Prof A Velthuis, Wageningen University

![](_page_11_Picture_0.jpeg)

## 2002: SARS

## Total economic loss: \$40billion?

|                                    | Temporary Shock |        |           | Persistent Shock over 10 years |         |        |           |         |
|------------------------------------|-----------------|--------|-----------|--------------------------------|---------|--------|-----------|---------|
|                                    | Total           | Domond |           | Country                        | Total   | Domond |           | Country |
|                                    | Effects         | Shift  | Cost Rise | Risk                           | Effects | Shift  | Cost Rise | Risk    |
| United<br>States                   | -0.07           | -0.01  | -0.06     | 0.00                           | -0.07   | -0.01  | -0.06     | 0.00    |
| Japan                              | -0.07           | -0.01  | -0.06     | 0.00                           | -0.06   | -0.01  | -0.06     | 0.01    |
| Australia                          | -0.07           | 0.00   | -0.06     | 0.00                           | -0.06   | 0.00   | -0.06     | 0.01    |
| New<br>Zealand                     | -0.08           | 0.01   | -0.08     | 0.00                           | -0.08   | 0.00   | -0.08     | 0.00    |
| Indonesia                          | -0.08           | 0.01   | -0.09     | 0.00                           | -0.07   | 0.01   | -0.08     | 0.00    |
| Malaysia                           | -0.15           | 0.01   | -0.16     | 0.00                           | -0.17   | 0.01   | -0.15     | -0.02   |
| Philippines                        | -0.10           | 0.04   | -0.14     | 0.00                           | -0.11   | 0.03   | -0.13     | -0.02   |
| Singapore                          | -0.47           | -0.02  | -0.45     | 0.00                           | -0.51   | -0.01  | -0.44     | -0.05   |
| Thailand                           | -0.15           | 0.00   | -0.15     | 0.00                           | -0.15   | 0.00   | -0.15     | 0.00    |
| China                              | -1.05           | -0.37  | -0.34     | -0.33                          | -2.34   | -0.53  | -0.33     | -1.48   |
| India                              | -0.04           | 0.00   | -0.04     | 0.00                           | -0.04   | 0.00   | -0.04     | 0.00    |
| Taiwan                             | -0.49           | -0.07  | -0.41     | -0.01                          | -0.53   | -0.07  | -0.39     | -0.07   |
| Korea                              | -0.10           | -0.02  | -0.08     | 0.00                           | -0.08   | -0.01  | -0.08     | 0.00    |
| Hong Kong                          | -2.63           | -0.06  | -2.37     | -0.20                          | -3.21   | -0.12  | -2.37     | -0.71   |
| ROECD                              | -0.05           | 0.00   | -0.05     | 0.00                           | -0.05   | 0.00   | -0.05     | 0.00    |
| Non-oil<br>developing<br>countries | -0.05           | -0.01  | -0.04     | 0.00                           | -0.05   | 0.00   | -0.04     | 0.00    |
| Eastern<br>Europe and<br>Russia    | -0.06           | -0.01  | -0.05     | 0.00                           | -0.05   | -0.01  | -0.05     | 0.00    |
| OPEC                               | -0.07           | -0.01  | -0.05     | 0.00                           | -0.09   | -0.01  | -0.06     | -0.02   |

| Country or<br>Region   | Cases | Deaths | SARS cases dead due to other causes | Fatality (%) |
|------------------------|-------|--------|-------------------------------------|--------------|
| China *                | 5,328 | 349    | 19                                  | 6.6          |
| Hong Kong *            | 1,755 | 299    | 5                                   | 17           |
| Canada                 | 251   | 44     | 0                                   | 18           |
| Taiwan **              | 346   | 37     | 36                                  | 11           |
| Singapore              | 238   | 33     | 0                                   | 14           |
| Vietnam                | 63    | 5      | 0                                   | 8            |
| United States          | 27    | 0      | 0                                   | 0            |
| Philippines            | 14    | 2      | 0                                   | 14           |
| Mongolia               | 9     | 0      | 0                                   | 0            |
| Macau *                | 1     | 0      | 0                                   | 0            |
| Kuwait                 | 1     | 0      | 0                                   | 0            |
| Republic of<br>Ireland | 1     | 0      | 0                                   | 0            |
| Romania                | 1     | 0      | 0                                   | 0            |
| Russian<br>Federation  | 1     | 0      | 0                                   | 0            |
| Spain                  | 1     | 0      | 0                                   | 0            |
| Switzerland            | 1     | 0      | 0                                   | 0            |
| South Korea            | 4     | 0      | 0                                   | 0            |
| Total                  | 8273  | 775    | 60                                  | 9.6          |

Probable cases of SARS by country, 1 November 2002 – 31 July 2003.

(\*) Figures for the People's Republic of China exclude the Special Administrative Regions (Macau SAR, Hong Kong SAR), which are reported separately by the WHO.

Source: WHO (http://www.who.int/csr/sars/en/)

![](_page_12_Picture_0.jpeg)

# 2006: Culicoides-borne virus incursions into Europe continue

| Strain         | Probable Incursion<br>Route  | Clinical<br>Impact    | Economic<br>Impact | Resolution  |
|----------------|------------------------------|-----------------------|--------------------|-------------|
| BTV-8 (2006-9) | ?                            | High (Cattle & Sheep) | High               | Vaccination |
| BTV-1 (2008-)  | Ruminant/Culicoides movement | Medium<br>(Sheep)     | Medium             | Vaccination |
| BTV-11 (2008)  | Illegal Vaccine Use          | Low                   | Low                | -           |
| BTV-6 (2008)   | Illegal Vaccine Use          | Low                   | Low                | -           |
| BTV-25 (2008)  | ?                            | Low                   | Low                | -           |
| BTV-14 (2011-) | ?                            | Medium                | ?                  | -           |
| SBV (2011-)    | ?                            | High                  | Medium-low         | Endemic     |
| BTV-27?        | ?                            | ?                     | ?                  | ?           |

![](_page_13_Picture_0.jpeg)

## 2007: African swine fever

Introduction thought to be consequence of improper waste treatment

Spread rapid, various routes including wildlife No vaccine

![](_page_13_Figure_4.jpeg)

Source: ASForcewebsite (http://asforce.org/course/assets/img/module1/map2.jpg)

# 2008: Peste des petits ruminants ("goat plague", "ovine rinderpest")

- Rapidly emerging in China
- Huge economic impact
- Single serotype
- No carriers
- Candidate for eradication?\*

![](_page_14_Figure_6.jpeg)

Source: FAO (2009)

\*OIE/FAO, May 2014 (Global Framework for the Progressive Control of Transboundary Animal Diseases)

![](_page_15_Picture_0.jpeg)

## Key questions

**Introduction:** How are pathogens getting in? How can this be reduced?

**Spread:** How fast and far are they likely to spread? How can this be reduced?

**Impact:** How much impact are they likely to have? How can this be reduced?

# Factors affecting likelihood of introduction

Epidemiological knowledge (e.g. AHSV in Spain)

Infected vectors

- aerial dispersal, e.g. BTV-8 in UK
- Via trade

Live vaccines (e.g. BTV in Italy)

Contaminated materials (e.g. canine AHSV in Africa) Improper disposal of waste (ASFV)

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_17_Picture_0.jpeg)

### Factors affecting rate of spread

Animal movement

Production

**Biosecurity** 

Climate

Vector establishment Increases in host population Habitat change

![](_page_17_Picture_7.jpeg)

![](_page_18_Picture_0.jpeg)

## Factors affecting impact of outbreak

Direct losses Public perception Trade restrictions International response

![](_page_18_Picture_3.jpeg)

## Emergence of TBEV in Eastern Europe since mid-1990s

![](_page_19_Figure_1.jpeg)

Source: Sumilo et al. (2007)

![](_page_20_Picture_0.jpeg)

## Epidemiology is complex

![](_page_20_Figure_2.jpeg)

Figure 8. Hypothetical explanation for the epidemiology of TBE in the Baltic countries. Examples of data from Estonia, Latvia and Lithuania indicate some factors that may act independently but synergistically to cause the emergence of tick-bome diseases. doi:10.1371/journal.pone.0000500.g008

Sumilo et al. (2007) "Climate Change Cannot Explain the Upsurge of Tick-Borne Encephalitis in the Baltics." PLoS ONE 2(6): e500.

## Why now?

Disease introduction now happens more often, and spread happens faster, because of:

- Increasing travel
- Increasing trade
- Increasing population
- Intensification of production

However, diagnostics and control technologies can also be developed and deployed more rapidly.

![](_page_22_Picture_0.jpeg)

## Impact-based prioritisation

Top viruses by industry

horse: AHSV, VEEV, WNV (EEEV)

cattle: RVFV, BTV/EHDV/LSDV

pig: ASFV

small ruminant: BTV, RVFV (NSDV)

![](_page_22_Picture_7.jpeg)

![](_page_22_Figure_8.jpeg)

![](_page_23_Picture_0.jpeg)

## Key strategies for control

Syndromic surveillance International cooperation:

- Data sharing
- Harmonised diagnostic criteria
- Collaboration on control programmes

Rapid response

- "Flexible" research areas
- SBV vaccine (~18mth) Novel approaches (GM etc).

![](_page_23_Picture_9.jpeg)

## Summary

- Diseases are emerging all the time
- Their impact can be high or low
- They do not respect international borders
- Costs by sector, type and country may change as an outbreak evolves
- Minimising the overall impact of disease emergence requires:
  - Efficient use of resources
  - Capacity for rapid response
  - International collaboration

## Acknowledgements

Thanks to:

Peter Mertens (Pirbright) for information on historical BTV incursions into Europe

Marie McIntyre (Liverpool) for sharing preliminary results of the Enhanced Infectious Diseases (EID2) project

![](_page_26_Picture_0.jpeg)

## Thank you for listening

![](_page_26_Picture_2.jpeg)