Home MANAGEMENT OF FIRE ANTS AND OTHER INVASIVE ANTS

Projects

MANAGEMENT OF FIRE ANTS AND OTHER INVASIVE ANTS

Summary

<div class="container" style="width:300px;">
<!–
<div class="leftcol">
<B>Forestry Component:</B> #forestry_component%

</div>
–>
<div class="leftcol" style="width:194px">
<b>Animal Health Component</b>
</div>
<div class="rightcol" style="width:56px; text-align:right">25%</div>
<div class="endrow" style="float:none; display:block;"></div>

<!–
<div class="leftcol">
<B>Is this an Integrated Activity?</B> #integrated_activity

</div>
<div class="rightcol"></div>
<div class="endrow"></div>
–>
<div class="leftcol">
<b>Research Effort Categories</b><br>
<div class="container" style="width: 375px;">
<div class="rec_leftcol">Basic</div>
<div class="rec_rightcol">40%</div>
<div class="endrow"></div>
<div class="rec_leftcol">Applied</div>
<div class="rec_rightcol">25%</div>
<div class="endrow"></div>
<div class="rec_leftcol">Developmental</div>
<div class="rec_rightcol">35%</div>
<div class="endrow"></div>
</div>
</div>
<div class="endrow"></div>

</div>

Objectives & Deliverables

<b>Project Methods</b><br> 1.1 Integration of any new natural agent into a fire ant control program will require the satisfactory completion of studies in host specificity, predicted-efficacy, virulence, mode of action/transmission, formulation/rearing and field release methodologies. 1.2 Water resistant and standard fire ant bait formulations exposed to irrigation will be evaluated for efficacy against fire ant colonies. The effect of bait application methods (piled vs broadcast) on improving bait tolerance to irrigation will also be assessed. 1.3 Behavioral and semiochemical underpinnings of fire ant mating flights and colony establishment will be examined by determining the behavior of alates to pyrazines with olfactometer bioassays and in-flight lek sampling. Male produced tyramides will be further evaluated for physiologicfal functions related to multiple mating and rapid wing loss. 1.4 The approach of this sub-objective will be defined by the scientist filling the vacant Molecular Biologist position. 1.5 The approach of this sub-objective will be defined by the scientist filling the vacant Entomologist position. 2.1 Little fire ants from across the native and introduced ranges will be collected and used as RNA source material to create cDNA expression libraries. Detailed bioinformatics analysis of resulting NGS data will allow us to identify potential microsporidia, fungi, viruses, protists, and non-hymenopteran eukaryotic parasites. Sequence leads will be verified by molecular analysis of little fire ant colonies sampled within and outside the native ranges. 2.2 Consumption and temporal feeding patterns by tawny crazy ants (TCA) on liquid sucrose bait containing a slow-acting toxicant will be compared to bait containing a fast-acting toxicant. Time lapse photography will be used to document temporal feeding patterns over 72 hours. TCA feeding patterns will be used to design liquid bait dispensers such as alginate hydrogel carrier and presented in a compostable dispenser. 2.3 Systematically evaluate exocrine glands in TCA and little fire ant (LFA) workers and queens for phenotypic effects, e.g. attraction, repellency, alarm, and recruitment using behavioral bioassays. Attraction will be investigated first, using a Y-tube olfactometer bioassay to guide the isolation of active compounds. Attractants can enhance baits and improve monitoring systems. 2.4 The approach of this sub-objective will be defined by the scientist filling the vacant Molecular Biologist position. 2.5 The approach of this sub-objective will be defined by the scientist filling the vacant Entomologist position.

Principle Investigator(s)

Planned Completion date: 02/09/2024

Effort: (N/A)

Project Status

ACTIVE

Principal Investigator(s)

Agricultural Research Service/USDA

Researcher Organisations

AGRICULTURAL RESEARCH SERVICE

Source Country

United KingdomIconUnited Kingdom